Graph sketching

- Sketch the graph of the function $y = f(x) = x \cdot e^{-x}$.
 - a. State the domain restrictions and find the vertical asymptotes, if any.
 - **b.** Determine whether f(x) is symmetric about the origin or is symmetric about the y-axis.
 - c. Find the intercepts with the coordinate axes.
 - **d.** Determine the sign of f(x).
 - e. Determine the end behaviour of the graph.
 - f. Calculate the first derivative and determine the critical points.
 - **g.** Analyze the sign of f'(x).
 - h. Calculate the second derivative.
 - i. Analyze the sign of f''(x) and find the points of inflection, if any.
 - j. Sketch the graph.
- **a.** The _____ is $(-\infty; +\infty)$; therefore there are no vertical _____
- **b.** $f(-x) = -x \cdot e^x$ and $-f(x) = -x \cdot e^{-x}$.

 $f(x) \neq f(-x)$ and $f(x) \neq -f(x)$ there are no symmetries.

c. x = 0 into $y = x \cdot e^{-x} \longrightarrow y = 0$.

Therefore f(x) _____ through the origin.

d. Consider $x \cdot e^{-x} > 0$

First solve the related equation $x \cdot e^{-x} = 0$.

Apply the zero product property

$$x = 0$$

The equation $e^{-x} = 0$ has no solution.

Now determine the sign of f(x).

From the sign chart we see that f(x) < 0 on interval $(-\infty; 0)$ and f(x) > 0 interval $(0; +\infty)$.

 $e. \lim_{x \to -\infty} x \cdot e^{-x} = -\infty$

$$\lim_{x \to +\infty} x \cdot e^{-x} = \lim_{x \to +\infty} \frac{x}{e^x} = \frac{\infty}{\infty}$$

Apply De l'Hôpital's theorem

$$\lim_{x \to +\infty} \frac{x}{e^x} = \lim_{x \to +\infty} \frac{1}{e^x} = 0$$

This limit shows that the graph get and closer to the x-axis as x _____ without bound.

Find the critical points. Let y' = 0

$$e^{-x}(1-x)=0$$

Apply the zero product property.

The equation $e^{-x} = 0$ has no solution.

The equation 1 - x = 0 is true for x = 1.

Substitute
$$x = 1$$
 into $y = x \cdot e^{-x} \longrightarrow y = e^{-1} \longrightarrow y = \frac{1}{e}$

$$M\left(1; \frac{1}{e}\right)$$
 is a critical point of $f(x)$.

g. Use a sign chart to determine the sign of f'(x).

The sign chart shows that

f'(x) > 0 on interval $(-\infty; 1)$, hence f(x) is increasing in this interval;

f'(x) < 0 on interval $(1; +\infty)$, hence f(x) is _____ in this interval.

We conclude that f(x) has a maximum at x = 1.

1.
$$y' = e^{-x} + (-e^{-x})x \longrightarrow y' = e^{-x}(1-x)$$
.

Find the critical points. Let y' = 0

$$e^{-x}(1-x)=0$$

Apply the zero product property.

The equation $e^{-x} = 0$ has no solution.

The equation 1 - x = 0 is true for x = 1.

Substitute
$$x = 1$$
 into $y = x \cdot e^{-x} \longrightarrow y = e^{-1} \longrightarrow y = \frac{1}{e}$

$$M\left(1; \frac{1}{e}\right)$$
 is a critical point of $f(x)$.

g. Use a sign chart to determine the sign of f'(x).

$$1-x>0$$
 ++++++
 $e^{-x}>0$ ++++++
 $f^{*}(x)$

The sign chart shows that

f'(x) > 0 on interval $(-\infty; 1)$, hence f(x) is increasing in this interval;

f'(x) < 0 on interval $(1; +\infty)$, hence f(x) is _____ in this interval.

We conclude that f(x) has a _____ at x = 1.

h.
$$y'' = -e^{-x}(1-x) + (-1)e^{-x} \longrightarrow y'' = -e^{-x}(1-x+1) \longrightarrow y'' = e^{-x}(x-2)$$

i. Consider $e^{-x}(x-2) > 0$. First solve the related $e^{-x}(x-2) = 0$.

Apply the zero product

The equation $e^{-x} = 0$ has no

The equation x - 2 = 0 is true for x = 2.

Now determine the sign of f''(x).

We conclude that f(x) is concave down on interval $(-\infty; 2)$ and is concave up on interval $(2; +\infty)$. Hence f(x) has a point of inflection at x = 2.

Substitute
$$x=2$$
 into $y=x\cdot e^{-x}\longrightarrow y=2\cdot e^{-2}\longrightarrow y=\frac{2}{e^2}$

The point $F\left(2; \frac{2}{e^2}\right)$ is an _____ point of f(x).

j. Finally sketch the graph (FIGURA 1).

FIGURE 1